NATIONAL CHEMISTRY OLYMPIAD 2023

MARKING SCHEME PRELIMINARY ROUND 2

To be conducted from March 20 until March 242023

- This preliminary round consists of 20 multiple choice questions divided over 8 topics and 3 problems with a total of 17 open questions.
- The maximum score for this work is 94 points.
- Required materials: (graphic) calculator and BINAS $6{ }^{\text {th }}$ edition or ScienceData $1^{\text {st }}$ edition or BINAS $5^{\text {th }}$ edition, English version.
- For each question the number of points you can score are given.
- While assigning scores for the work, this marking scheme has to be used. Moreover the general rules for the Dutch Central Exams apply.

For every correct answer: 2 points

Carbon chemistry

$\mathbf{1}$	I	The single bonds between the C atoms and the H atoms are σ-bonds, as are the single bonds between two C atoms, between the C atoms and the O atoms of the OH groups, and between de O atoms and the H atoms. The double bond between the C atoms consists of a σ-bond and a π-bond. The double bonds between the C atoms and the O atoms consist of a σ-bond and a m-bond.
2	D	An H atom is replaced by a

Structures and formulas

4	D	
5	B	The structure of the FCC unit cell is: The unit cell contains $8 \times \frac{1}{8}+6 \times \frac{1}{2}=4$ atoms. When the edge of the unit cell is set to $a \mathrm{~m}$, the density is $\frac{4 \times 197.0 \times 1.66 \cdot 10^{-27}}{a^{3}}=19.3 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. That gives $a=4.08 \cdot 10^{-10} \mathrm{~m}$. The smallest distance between two gold nuclei is half of the diagonal of one face of the cube, so $\frac{4.08 \cdot 10^{-10}}{\sqrt{2}}=2.88 \cdot 10^{-10} \mathrm{~m}$.
6	1	The oxygen atom in the alcohol molecule has two bonds and two lone pairs, so it is sp^{3} hybridised. The oxygen atom in the intermediate has three bonds and one lone pair, so it is also sp^{3} hybridised.
7	D	Oxygen is in period 2 , so $n=2$ and $l=0$ or $l=1$. If $l=0 m_{l}$ can't be -1 .

Thermochemistry

8	B	$\Delta H=-\left(-1.105 \cdot 10^{5}\right)-\left(-2.42 \cdot 10^{5}\right)+\left(-3.935 \cdot 10^{5}\right)=-0.41 \cdot 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$, this is negative so the reaction is exothermic. When the reaction occurs spontaneously, it must be that $\Delta G<0$, so $\Delta H-T \Delta S<0$. At $1200 \mathrm{~K} \Delta H-T \Delta S=-0,41 \cdot 10^{5}-1200 \times(-42)=9,4 \cdot 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$. This is greater than zero and at even higher temperatures ΔG becomes even greater.
9	D	$\begin{aligned} & \Delta G^{0}=-n F \Delta E^{0}=-R T \ln K ; n=2 \text { and } \Delta E^{0}=(0.77-0.54)=0.23 \mathrm{~V} \text {, so } \\ & K=e^{\frac{n F \angle E^{0}}{R T}}=e^{\frac{2 \times 9.649 \cdot 10^{4} \times 0.23}{8.314 \times 298}}=6.0 \cdot 10^{7} . \end{aligned}$

Redox and electrochemistry

10	D	The equation of the half-reaction is:
11	E	The strongest oxidising agent $\left(\mathrm{Cu}^{2+}\right)$ and the strongest reducing agent $\left(\mathrm{Br}^{-}\right)$will react first.

pH / acid-base

12 C At very high pH , glycine occurs as $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COO}^{-}$.
As the pH drops, a H^{+}binds to the most basic group, which is the NH_{2} group ($\mathrm{p} K_{\mathrm{b}}=4.22$, while the $\mathrm{p} K_{\mathrm{b}}$ of the COO^{-}group is equal to $14.00-2.35=11.65$).
At $\mathrm{pH}=4.60$ there is the following equilibrium: ${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightleftharpoons{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$ $\mathrm{p} K_{\mathrm{z}}=\mathrm{pH}-\log \frac{\text { number of moles of }{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}}{\text {number of moles of }{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}}$, filled out:
$2.35=4.60-\log \frac{\text { number of moles of }{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}}{\text {number of moles of }{ }^{~} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}}$, so
log $\frac{\text { number of moles of }{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}}{\text {number of moles of }{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}}=4.60-2.35=2.25$
So, the number of moles of ${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-} \gg$ the number of moles of ${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$. At even lower pH values, the COO^{-}group is also protonated. At $\mathrm{pH}<2.35$, glycine occurs primarily as ${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.

13 D 0.020 moles of OH^{-}react with 0.020 moles of $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ to form 0.020 moles of $\mathrm{CH}_{3} \mathrm{CHOHCOO}$.
After the reaction there are $0.100-0.020=0.080$ moles of $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ present and $0.120+0.020=0.140$ moles of $\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-}$, so a buffer solution has formed.

So, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{z}} \times \frac{\text { number of moles of } \mathrm{CH}_{3} \mathrm{CHOHCOOH}}{\text { number of moles of } \mathrm{CH}_{3} \mathrm{CHOHCOO}}=1.4 \cdot 10^{-4} \times \frac{0.080}{0.140}=8.0 \cdot 10^{-5}$ and $\mathrm{pH}=-\log 8.0 \cdot 10^{-5}=4.10$.

Chemical calculations

14	B	$600 \mathrm{mg} \mathrm{Fe}_{2} \mathrm{O}_{3}$ is $\frac{600}{159.69} \mathrm{mmol}$ which contains $2 \times \frac{600}{159.69}=7.51$ mmoles of Fe and $3 \times \frac{600}{159.69}=11.27$ mmoles of 0 . In $22.6 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}$ there is $\frac{22.6}{18.015}=1.25$ mmoles of O , so there is $11.27-1.25=10.02$ mmoles of O remaining in the solid. Therefore, the ratio $\mathrm{Fe}: \mathrm{O}$ is $7.51: 10.02=3: 4$.
15	D	$200{ }^{\circ} \mathrm{C}$ is $473 \mathrm{~K}, 3.00 \mathrm{~atm}$ is $3.00 \times 1.01 \cdot 10^{5} \mathrm{~Pa}$ and $2.16 \mathrm{~g} \mathrm{dm}^{-3}$ is $2.16 \cdot 10^{3} \mathrm{~g} \mathrm{~m}^{-3}$. Setting the molar mass to $\mathrm{M} \mathrm{g} \mathrm{mol}^{-1}$, it follows that $1.00 \mathrm{~m}^{3}$ of the gas contains $\frac{2.16 \cdot 10^{3}}{M} \mathrm{~mol}$. The ideal gas law states that $p V=n R T$ or $3.03 \cdot 10^{5} \times 1.00=\frac{2.16 \cdot 10^{3}}{M} \times 8.314 \times 473$ or $M=\frac{2.16 \cdot 10^{3}}{3.03 \cdot 10^{5} \times 1.00} \times 8.314 \times 473=28.0 \mathrm{~g} \mathrm{~mol}^{-1}$ This is the molar mass of nitrogen, N_{2}.

Reaction rate and equilibrium

16	C	When step 2 is rate determining, rate $=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]$. From the equilibrium condition $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}{\left[\mathrm{NO}^{2}\right.}=K$ for step 1, it follows that $\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=K[\mathrm{NO}]^{2}$. So rate $=k_{2} K\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right.$, which is in agreement with the stated rate equation for $k=k_{2} K$.
17	B	$\left[\mathrm{Ba}^{2+}\right]=\frac{50 \times 0.010}{50+50}=0.0050 \mathrm{molL}^{-1}$ and $\left[\mathrm{F}^{-}\right]=\frac{2 \times 50 \times 0.015}{50+50}=0.015 \mathrm{~mol} \mathrm{~L}^{-1}$ $K_{\mathrm{s}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=0.0050 \times(0.015)^{2}=1.1 \cdot 10^{-6}$

Analysis

19 C \quad Adding hydrochloric acid causes gas production with the carbonates but not with the hydroxide. There is no precipitation when a solution of hydrochloric acid is added to barium carbonate or zinc carbonate.
The negative $\mathrm{SO}_{4}{ }^{2-}$ ion of sulphuric acid forms a precipitate with Ba^{2+} and Ca^{2+} but not with Zn^{2+}. Sulphuric acid causes gas formation with barium carbonate, while with calcium hydroxide it does not.

20 A Because the cuvette is not rinsed with the solution that will be measured, dilution will cause a lower extinction to be measured and thus a lower concentration to be found. At a wavelength higher than $\lambda_{\text {max }}$, the extinction is lower. When calculations are then performed with the smaller ε (molar extinction coefficient), belonging to that higher wavelength, the student will find a similar concentration to the real one. If calculations are performed with the ε that belongs to $\lambda_{\max }$, the student will find a lower concentration than the real one.

Open questions

Problem 2 Methylphenidate

-1 Maximum score 2

- in reaction 1
in reaction 3
Note
When an incorrect reaction is listed, deduct 1 point - the minimum score for this question is 0 points.

口2 Maximum score 2
A correct answer might look as follows:

asterisks at the three carbon atoms of the benzene ring correct
asterisk at the N atom of the cyanide group
Notes

- When an asterisk is placed at an incorrect atom of the benzene ring, the first partial score is not to be assigned.
- When an asterisk is placed at the C atom of the cyanide group, the second partial score is not to be assigned.
- When an asterisk is placed at the C atom where the negative charge was drawn in the given structural formula, do not penalize this.

Maximum score 2
The reaction of the negative ion of 1 with a molecule 2 to form molecule $\mathbf{3}$ is a substitution reaction in which the negative ion from 1 functions as nucleophile.

- substitution reaction
- nucleophile 1

Maximum score 8
Examples of a correct answer are:
step 1

step 2

step 3

step 4

and

- in step 1, correctly drawn arrows
- in step 1, the Lewis structures and charges correct
- in step 2, correctly drawn arrows
- correct Lewis structure and charge after step 2
- in step 3, correctly drawn arrows
- correct Lewis structure and charge after step 3
- in step 4, correctly drawn arrows
- correct Lewis structure and charge after step 4

If, in an otherwise correct answer, one or more arrows are drawn 'wrong way around'

Note

When $\mathrm{H}_{2} \mathrm{O}$ is not listed to the right of the arrow in step 1 and/or $\mathrm{H}_{3} \mathrm{O}^{+}$is not listed to the right of the arrow in step 4, do not penalize this.

口5 Maximum score 6
A correct answer might look as follows:
The change in energy for the hydrogenation of 2 moles of $C=C$ bonds and 1 mole of $C=N$ bonds is:
$2 \times\left(-B E_{C=C}-B E_{H-H}+B E_{C-C}+2 \times B E_{C-H}\right)+\left(-B E_{C=N}-B E_{H-H}+B E_{C-N}+B E_{C-H}+B E_{N-H}\right)=$
$2 \times\left\{-\left(-6.1 \cdot 10^{5}\right)-\left(-4.36 \cdot 10^{5}\right)+\left(-3.5 \cdot 10^{5}\right)+2 \times\left(-4.1 \cdot 10^{5}\right)\right\}+\left\{-\left(-6.2 \cdot 10^{5}\right)-\left(-4.36 \cdot 10^{5}\right)+\right.$ $\left.\left(-2.8 \cdot 10^{5}\right)+\left(-4.1 \cdot 10^{5}\right)+\left(-3.9 \cdot 10^{5}\right)\right\}=-2.7 \cdot 10^{5} \mathrm{~J}$.
So, the hydrogenation energy of one mole of pyridine rings is
$-2.7 \cdot 10^{5}+1.07 \cdot 10^{5}=-1.6 \cdot 10^{5} \mathrm{~J}$.
This is less than the $2.1 \cdot 10^{5} \mathrm{~J}$ released in the hydrogenation of a mole of benzene rings.

- notion that 2 moles of $\mathrm{C}=\mathrm{C}$ bonds and 1 mole of $\mathrm{C}=\mathrm{N}$ bonds are broken
- notion that 3 moles of $\mathrm{H}-\mathrm{H}$ bonds are broken
- notion that 2 moles of $\mathrm{C}-\mathrm{C}$ bonds and 1 mole of $\mathrm{C}-\mathrm{N}$ bonds are formed
- notion that 5 moles of $\mathrm{C}-\mathrm{H}$ bonds and 1 mole of $\mathrm{N}-\mathrm{H}$ bonds are formed
- correct summation of bond energies
- calculation of the hydrogenation energy of a mole of pyridine rings and conclusion

व6 Maximum score 1
Examples of a correct answer are:

- The activation energy for the hydrogenation of benzene rings is greater than that for the hydrogenation of pyridine rings.
- The catalyst is specific for the hydrogenation of the pyridine ring.

口7 Maximum score 2

- P is $\mathrm{H}_{3} \mathrm{O}^{+}$
- \mathbf{Q} is NH_{4}^{+}

If the answer \mathbf{P} is $\mathrm{H}_{2} \mathrm{O}$ and \mathbf{Q} is NH_{3} is given
-8 Maximum score 2

- \mathbf{R} is $\mathrm{CH}_{3} \mathrm{OH}$
. S is $\mathrm{H}_{2} \mathrm{O}$

Problem 3 The decomposition of azomethane

-9 Maximum score 2
A correct answer might look as follows:
$\mathrm{H}_{3} \mathrm{C}-\underline{\mathrm{N}}=\overline{\mathrm{N}}-\mathrm{CH}_{3}$
. single bonds between the N atoms and C atoms and double bond between both N atoms
non-bonding electron pairs on both N atoms
Note
When the answer $\mathrm{CH}_{3}-\underline{N}=\overline{\mathrm{N}}-\mathrm{CH}_{3}$ is given, give full marks.
व10 Maximum score 3
The nitrogen atoms have a trigonal planar geometry.
There is no free rotation around the double bonds between the N atoms / the double bond is rigid, so there are two cis-trans isomers.

- the nitrogen atoms have a trigonal planar geometry
- there is no free rotation around the double bond between the N atoms / the double bond
is rigid
conclusion 1

Note

An answer like the following is also correct: „There are two stereoisomers / cis-trans
isomers namely
 and

Maximum score 7
An example of a correct calculation is as follows:
For a first order reaction $\ln \frac{\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right]_{0}}{\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right]_{t}}=k t$.
For gases, the partial pressure is proportional to the concentration, therefore
$\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}=k t$ or $k=\frac{\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}}{t}$.
From 1 mole of gas, 2 moles of gas are produced, therefore
$\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}=\frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{\infty}}{2}=\frac{1.144 \cdot 10^{5}}{2}=0.572 \cdot 10^{5} \mathrm{~Pa}$.
If at time t during the reaction the partial pressure of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$ has decreased by $x \mathrm{~Pa}$, the partial pressures of $\mathrm{C}_{2} \mathrm{H}_{6}$ and N_{2} have increased by $x \mathrm{~Pa}$, and the total pressure is then $\left(0.572 \cdot 10^{5}+x\right) \mathrm{Pa}$, thus
$\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}=0.572 \cdot 10^{5}-x$.
After $10.0 \mathrm{~min}, p_{\text {total }}=0.656 \cdot 10^{5} \mathrm{~Pa}$, thus $x=0.656 \cdot 10^{5}-0.572 \cdot 10^{5}=0.084 \cdot 10^{5} \mathrm{~Pa}$ and $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{10.0}=0.572 \cdot 10^{5}-0.084 \cdot 10^{5}=0.488 \cdot 10^{5} \mathrm{~Pa}$ and
$\frac{\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{10.0}}}{10.0}=\frac{\ln \frac{0.572 \cdot 10^{5}}{0.488 \cdot 10^{5}}}{10.0}=0.0159$.
After 21.0 min , $p_{\text {total }}=0.732 \cdot 10^{5} \mathrm{~Pa}$, thus $x=0.732 \cdot 10^{5}-0.572 \cdot 10^{5}=0.160 \cdot 10^{5} \mathrm{~Pa}$ and $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{21.0}=0.572 \cdot 10^{5}-0.160 \cdot 10^{5}=0.412 \cdot 10^{5} \mathrm{~Pa}$ and
$\frac{\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{21.0}}}{21.0}=\frac{\ln \frac{0.572 \cdot 10^{5}}{0.412 \cdot 10^{5}}}{21.0}=0.0156$.
After 35.0 min , $p_{\text {total }}=0.813 \cdot 10^{5} \mathrm{~Pa}$, thus $x=0.813 \cdot 10^{5}-0.572 \cdot 10^{5}=0.241 \cdot 10^{5} \mathrm{~Pa}$ and $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{35.0}=0.572 \cdot 10^{5}-0.241 \cdot 10^{5}=0.331 \cdot 10^{5} \mathrm{~Pa}$ and
$\frac{\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{35.0}}}{35.0}=\frac{\ln \frac{0.572 \cdot 10^{5}}{0.331 \cdot 10^{5}}}{35.0}=0.0156$.
Three times (almost) the same result for $\frac{\ln \frac{\left(p_{\left.\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{0}}^{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}\right.}{t} \text { is obtained, so this is a first order }}{t}$ reaction.
$k=\frac{0.0159+0.0156+0.0156}{3}=0.0157 \mathrm{~min}^{-1}$.
In SI units: $k=\frac{0.0157}{60}=2.62 \cdot 10^{-4} \mathrm{~s}^{-1}$.

- notion that holds for the first order reaction $\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}=k t$ or $k=\frac{\ln \frac{\left(p_{\left.\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{0}}^{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}\right.}{t}}{t}$
- calculation of $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}: 1.144 \cdot 10^{5} \mathrm{~Pa}$ divided by 2
- notion that the increase in total pressure equals the decrease in $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)$
. calculation of $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{10.0},\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{21.0}$ and $\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{35.0}$
calculation of $\frac{\ln \frac{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{0}}{\left(p_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}}{t}$ for $t=10.0 \mathrm{~min}, t=21.0 \mathrm{~min}$ and $t=35.0 \mathrm{~min}$ and concluding that it is a first order reaction
. calculation of k : the average of the results of $\frac{\ln \frac{\left(p_{\left.\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{0}}^{\left(p_{\mathrm{C}_{2}} \mathrm{H}_{6} \mathrm{~N}_{2}\right.}\right)_{t}}{t}}{t}$ for $t=10.0 \mathrm{~min}, t=21.0 \mathrm{~min}$ and $t=35.0 \mathrm{~min}$
correct unit of k provided
If in an otherwise correct answer k is calculated for only one moment (so not is proven that it is a first order reaction)

Notes

- If the unit is given in min^{-1}, do not penalize this.
- When by using the data at two points it is shown that the reaction is of the first order, and for the calculation of k the average of the two results of $\frac{\ln \frac{\left(p_{\mathrm{C}_{2}} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{0}}{\left(\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}}\right)_{t}}}{t}$ is used, do not penalize this.
व12 Maximum score 2
An example of a correct answer is:
The rate constant should be determined at one more temperature, and Arrhenius' law applied.
- the rate constant should be determined at one more temperature
- apply Arrhenius' law

Problem 4 Superphosphate

$\square 13$ Maximum score 3
$2 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+7 \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{g})$

- correct formulas with correct state symbols at the correct side of the arrow
- P and F balanced correctly

Ca, H, S and O balanced correctly
व14 Maximum score 3
An example of a correct calculation is:
$\frac{3 \times 234.05}{3 \times 234.05+7 \times 136.14} \times 10^{2}=42$ (mass\%)

- calculation of the molar mass of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}: 234,05 \mathrm{~g} \mathrm{~mol}^{-1}$
- calculation of the sum of the masses of 3 moles of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ and 7 moles of CaSO_{4}
- rest of the calculation and answer rounded to the nearest whole number

Notes

- When an incorrect answer to question 14 is a direct consequence of an incorrect answer to question 13 and the molar ratio $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$: CaSO_{4} was not equal to 1:1, do not penalize this.
- When the molar ratio $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}: \mathrm{CaSO}_{4}=1: 1$ was used in the answer to question 14, the second partial score is not to be assigned.

Maximum score 2
A correct answer can be formulated as follows:
By dissolving $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, the $\left[\mathrm{Ca}^{2+}\right]$ increases. Hence, the solution equilibrium of CaSO_{4} shifts to the left (and less CaSO_{4} dissolves).

- due to dissolving $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, the $\left[\mathrm{Ca}^{2+}\right]$ increases
- so the solution equilibrium of CaSO_{4} shifts to the left

If an answer is given such as: „Due to the dissolving of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, the solution already contains many ions so that less Ca^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ can be added/dissolved."

Maximum score 3
A correct answer can be formulated as follows:
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMO}_{12} \mathrm{O}_{40}+\mathrm{OH}^{-} \rightarrow 12 \mathrm{MoO}_{4}{ }^{2-}+\mathrm{HPO}_{4}{ }^{2-}$
The amount of negative charges to right of the arrow is $12 \times 2+2=26$.
So 26 moles of OH^{-}react with 1 mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}$.

- each mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMO}_{12} \mathrm{O}_{40}$ forms 12 moles of $\mathrm{MoO}_{4}{ }^{2-}$ and 1 mole of $\mathrm{HPO}_{4}{ }^{2-}$
- calculation of the amount of negative charges to the right side of the arrow
- number of OH^{-}made equal to the amount of negative charges on the right side of the arrow

If an answer is given like: „To the right of the arrow $\mathrm{MoO}_{4}{ }^{2-}$ and $\mathrm{HPO}_{4}{ }^{2-}$ are listed, these have 4 negative charges, so 4 (moles of) OH^{-}react."

Note
When the complete and correct reaction equation is given, give full marks.

ロ17 Maximum score 4

An example of a correct calculation is:
$\frac{(10.00-0.380)}{26} \times \frac{1}{2} \times \frac{100.0}{10.00}=1.85(\mathrm{mmol})$

- calculation of the amount of mmoles of OH^{-}that reacted with $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}$:
$10.00-0.380$ (mmol)
- calculation of the amount of mmoles of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}$: dividing the amount of mmoles of OH^{-}by 26
- calculation of the amount of mmoles of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ present in 10.00 mL solution: dividing the amount of mmoles of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMO}_{12} \mathrm{O}_{40}$ by 2
- calculation of the amount of mmoles of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ present in 100.0 mL solution: dividing the amount of mmoles of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ by $10.00(\mathrm{~mL})$ and multiplying by $100.0(\mathrm{~mL})$

Notes

- When an incorrect answer to question 17 is a direct consequence of an incorrect answer to question 16 and the answer to question 16 was not equal to $1 \mathrm{~mol} \mathrm{OH}^{-}$, do not penalize this
- When the following molar ratio is used in question 17: „one mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMO}_{12} \mathrm{O}_{40}$ reacts with one mole of OH^{-}(as answer to question 16)", the second partial score is not to be assigned.

