NATIONAL CHEMISTRY OLYMPIAD 2023

MARKING SCHEME PRELIMINARY ROUND 2

To be conducted from March 20 until March 24 2023

Universiteit Leiden

- This preliminary round consists of 20 multiple choice questions divided over 8 topics and 3 problems with a total of 17 open questions.
- The maximum score for this work is 94 points.
- Required materials: (graphic) calculator and BINAS 6th edition or ScienceData 1st edition or BINAS 5th edition, English version.
- For each question the number of points you can score are given.
- While assigning scores for the work, this marking scheme has to be used. Moreover the general rules for the Dutch Central Exams apply.

Problem 1 Multiple-choice questions

For every correct answer: 2 points

Carbon chemistry

1	1	The single bonds between the C atoms and the H atoms are σ -bonds, as are the single bonds between two C atoms, between the C atoms and the O atoms of the OH groups and between de O atoms and the H atoms.			
		The double bond between the C atoms consists of a σ -bond and a π -bond. The double bonds between the C atoms and the O atoms consist of a σ -bond and a π -bond.			
2	D	An H atom is replaced by a $\stackrel{O}{\vdash}_R$ group.			
3	В	Method I is a nucleophilic substitution reaction of the phenolate on the bromomethane Method II would also be a nucleophilic substitution reaction, of methanolate on the benzene ring, but in a benzene ring only electrophilic substitution would occur.			

Structures and formulas

4	D	°{Q ^{−−} S [®] Q ¹			
5	В	The structure of the FCC unit cell is:			
		The unit cell contains $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ atoms. When the edge of the unit cell is set to			
		<i>a</i> m, the density is $\frac{4 \times 197.0 \times 1.66 \cdot 10^{-27}}{a^3} = 19.3 \cdot 10^3$ kg m ⁻³ .			
		That gives $a = 4.08 \cdot 10^{-10}$ m. The smallest distance between two gold nuclei is half of			
		the diagonal of one face of the cube, so $\frac{4.08 \cdot 10^{-10}}{\sqrt{2}} = 2.88 \cdot 10^{-10}$ m.			
6	I	The oxygen atom in the alcohol molecule has two bonds and two lone pairs, so it is an^3 by bridier d			
		The oxygen atom in the intermediate has three bonds and one lone pair, so it is also sp ³ hybridised.			
7	D	Oxygen is in period 2, so $n = 2$ and $l = 0$ or $l = 1$. If $l = 0$ m_l can't be -1 .			

Thermochemistry

8	В	$\Delta H = -(-1.105 \cdot 10^5) - (-2.42 \cdot 10^5) + (-3.935 \cdot 10^5) = -0.41 \cdot 10^5$ J mol ⁻¹ , this is negative so the reaction is exothermic.					
		When the reaction occurs spontaneously, it must be that $\Delta G < 0$, so $\Delta H - T\Delta S < 0$. At 1200 K $\Delta H - T\Delta S = -0.41 \cdot 10^5 - 1200 \times (-42) = 9.4 \cdot 10^3$ J mol ⁻¹ .					
		This is greater than zero and at even higher temperatures ΔG becomes even greater.					
9	D	$\Delta G^0 = -nF\Delta E^0 = -RT\ln K$; $n = 2$ and $\Delta E^0 = (0.77 - 0.54) = 0.23$ V, so					
		$K = e^{\frac{nF\Delta E^0}{RT}} = e^{\frac{2 \times 9.649 \cdot 10^4 \times 0.23}{8.314 \times 298}} = 6.0 \cdot 10^7.$					

Redox and electrochemistry

10	D	The equation of the half-reaction is: H H H H H H H H H H H H H H H H H H H
11	Ε	The strongest oxidising agent (Cu ²⁺) and the strongest reducing agent (Br ⁻) will react first.

pH / acid-base

12	С	At very high pH, glycine occurs as H ₂ NCH ₂ COO ⁻ . As the pH drops, a H ⁺ binds to the most basic group, which is the NH ₂ group (p K_b = 4.22, while the p K_b of the COO ⁻ group is equal to 14.00 – 2.35 = 11.65). At pH = 4.60 there is the following equilibrium: ⁺ NH ₂ CH ₂ COOH \implies ⁺ NH ₂ CH ₂ COO ⁻ + b			
		$pK_{z} = pH - \log \frac{\text{number of moles of }^{\dagger}\text{NH}_{3}\text{CH}_{2}\text{COO}^{-}}{\text{number of moles of }^{\dagger}\text{NH}_{3}\text{CH}_{2}\text{COOH}}, \text{ filled out:}$			
		2.35 = 4.60 - log $\frac{\text{number of moles of }^{+}\text{NH}_3\text{CH}_2\text{COO}^{-}}{\text{number of moles of }^{+}\text{NH}_3\text{CH}_2\text{COOH}}$, so			
		$\log \frac{\text{number of moles of }^{+}\text{NH}_3\text{CH}_2\text{COO}^{-}}{\text{number of moles of }^{+}\text{NH}_3\text{CH}_2\text{COOH}} = 4.60 - 2.35 = 2.25$			
		So, the number of moles of $^{+}NH_{3}CH_{2}COO^{-} >>$ the number of moles of $^{+}NH_{3}CH_{2}COOH$. At even lower pH values, the COO ⁻ group is also protonated. At pH < 2.35, glycine occurs primarily as $^{+}NH_{3}CH_{2}COOH$.			

13	D	0.020 moles of OH ⁻ react with 0.020 moles of CH ₃ CHOHCOOH to form 0.020 moles of CH ₃ CHOHCOO ⁻ .				
		After the reaction there are $0.100 - 0.020 = 0.080$ moles of CH ₃ CHOHCOOH present and				
		0.120 + 0.020 = 0.140 moles of CH ₃ CHOHCOO ⁻ , so a buffer solution has formed.				
		So, $[H_3O^+] = K_z \times \frac{\text{number of moles of CH}_3\text{CHOHCOOH}}{\text{number of moles of CH}_3\text{CHOHCOO}^-} = 1.4 \cdot 10^{-4} \times \frac{0.080}{0.140} = 8.0 \cdot 10^{-5}$				
		and pH = $-\log 8.0 \cdot 10^{-5} = 4.10$.				

Chemical calculations

14	В	600 mg Fe ₂ O ₃ is $\frac{600}{159.69}$ mmol which contains $2 \times \frac{600}{159.69} = 7.51$ mmoles of Fe and
		$3 \times \frac{600}{159.69} = 11.27$ mmoles of O.
		In 22.6 mg H ₂ O there is $\frac{22.6}{18.015} = 1.25$ mmoles of O,
		so there is $11.27 - 1.25 = 10.02$ mmoles of O remaining in the solid.
		Therefore, the ratio $Fe : 0$ is $7.51 : 10.02 = 3 : 4$.
15	D	200 °C is 473 K, 3.00 atm is $3.00 \times 1.01 \cdot 10^5$ Pa and 2.16 g dm ⁻³ is $2.16 \cdot 10^3$ g m ⁻³ . Setting the molar mass to <i>M</i> g mol ⁻¹ , it follows that 1.00 m ³ of the gas contains
		$\frac{2.16 \cdot 10^3}{M} \text{ mol.}$
		The ideal gas law states that $pV = nRT$ or $3.03 \cdot 10^5 \times 1.00 = \frac{2.16 \cdot 10^3}{M} \times 8.314 \times 473$ or
		$M = \frac{2.16 \cdot 10^3}{3.03 \cdot 10^5 \times 1.00} \times 8.314 \times 473 = 28.0 \text{ gmol}^{-1}.$
		This is the molar mass of nitrogen, N ₂ .

Reaction rate and equilibrium

16	С	When step 2 is rate determining, $rate = k_2[N_2O_2][H_2]$. From the equilibrium condition $\frac{[N_2O_2]}{[NO]^2} = K$ for step 1, it follows that $[N_2O_2] = K[NO]^2$.			
		So rate = $k_2 K$ [NO] ² [H ₂], which is in agreement with the stated rate equation for $k = k_2 K$.			
17	В	$[Ba^{2+}] = \frac{50 \times 0.010}{50 + 50} = 0.0050 \text{ mol } L^{-1} \text{ and } [F^{-}] = \frac{2 \times 50 \times 0.015}{50 + 50} = 0.015 \text{ mol } L^{-1}$ $K_{s} = [Ba^{2+}][F^{-}]^{2} = 0.0050 \times (0.015)^{2} = 1.1 \cdot 10^{-6}$			

18	D		Br ₂	+	Cl ₂	1	2 BrCl
		start	1.00 mol		1.00 mol		0.00
		converted/produced	x mol		x mol		2 x mol
		equilibrium	(1.00- <i>x</i>) mol		(1.00 – x) mol		2 x mol
		$K = \frac{[BrCl]^2}{[Br_2][Cl_2]} = \frac{\left(\frac{2x}{V}\right)^2}{\left(\frac{1.00}{V}\right)^2}$ So, 2 × 0.566 moles of The total mass is 1.00 BrCl is $\frac{2 \times 0.566 \times 115.}{230.7}$	$\frac{x}{-x}^{2} = 6.80, \text{ or}$ BrCl are produce × 2 × 79.90 + 1.0 $\frac{35}{-x} \times 100 = 56.6\%$	∫ (1 ed, 0 × 2	$\frac{(2x)^2}{(00-x)^2} = 6.80$, which is 2 × 0.560 2 × 35.45 = 230.7	, it follov 6 × 115.3 g, so the	ws that <i>x</i> = 0.566. 5 g BrCl. e mass percentage

Analysis

19	С	Adding hydrochloric acid causes gas production with the carbonates but not with the hydroxide. There is no precipitation when a solution of hydrochloric acid is added to barium carbonate or zinc carbonate. The negative SO_4^{2-} ion of sulphuric acid forms a precipitate with Ba^{2+} and Ca^{2+} but not with Zn^{2+} . Sulphuric acid causes gas formation with barium carbonate, while with calcium hydroxide it does not.
20	Α	Because the cuvette is not rinsed with the solution that will be measured, dilution will cause a lower extinction to be measured and thus a lower concentration to be found. At a wavelength higher than λ_{max} , the extinction is lower. When calculations are then performed with the smaller ε (molar extinction coefficient), belonging to that higher wavelength, the student will find a similar concentration to the real one. If calculations are performed with the ε that belongs to λ_{max} , the student will find a lower concentration than the real one.

44th National Chemistry Olympiad 2023 Preliminary round 2 Marking scheme open questions

Open questions

Problem 2 Methylphenidate

- I Maximum score 2
 - \cdot in reaction 1
 - \cdot in reaction 3

Note

When an incorrect reaction is listed, deduct 1 point - the minimum score for this question is 0 points.

D2 Maximum score 2

A correct answer might look as follows:

- \cdot asterisks at the three carbon atoms of the benzene ring correct
- \cdot asterisk at the N atom of the cyanide group

Notes

- When an asterisk is placed at an incorrect atom of the benzene ring, the first partial score is not to be assigned.
- When an asterisk is placed at the C atom of the cyanide group, the second partial score is not to be assigned.
- When an asterisk is placed at the C atom where the negative charge was drawn in the given structural formula, do not penalize this.

D3 Maximum score 2

The reaction of the negative ion of 1 with a molecule 2 to form molecule 3 is *a substitution reaction* in which the negative ion from 1 functions as *nucleophile*.

- · substitution reaction
- nucleophile

•

1

1

1

1

1 1

25 points

(total 54 points)

□4 Maximum score 8

Examples of a correct answer are:

Note

When H_2O is not listed to the right of the arrow in step 1 and/or H_3O^+ is not listed to the right of the arrow in step 4, do not penalize this.

D5 Maximum score 6

A correct answer might look as follows:

The change in energy for the hydrogenation of 2 moles of C = C bonds and 1 mole of C = N bonds is:

$$\begin{split} &2\times(-BE_{C=C}-BE_{H-H}+BE_{C-C}+2\times BE_{C-H})+(-BE_{C=N}-BE_{H-H}+BE_{C-N}+BE_{C-H}+BE_{N-H})=\\ &2\times\{-(-6.1\cdot10^5)-(-4.36\cdot10^5)+(-3.5\cdot10^5)+2\times(-4.1\cdot10^5)\}+\{-(-6.2\cdot10^5)-(-4.36\cdot10^5)+(-2.8\cdot10^5)+(-4.1\cdot10^5)+(-3.9\cdot10^5)\}=-2.7\cdot10^5\ J. \end{split}$$

So, the hydrogenation energy of one mole of pyridine rings is

 $-2.7 \cdot 10^5 + 1.07 \cdot 10^5 = -1.6 \cdot 10^5 \text{ J}.$

This is less than the $2.1 \cdot 10^5$ J released in the hydrogenation of a mole of benzene rings.

\cdot notion that 2 moles of C = C bonds and 1 mole of C = N bonds are broken	1
\cdot notion that 3 moles of H – H bonds are broken	1
\cdot notion that 2 moles of C – C bonds and 1 mole of C – N bonds are formed	1
\cdot notion that 5 moles of C – H bonds and 1 mole of N – H bonds are formed	1
· correct summation of bond energies	1
\cdot calculation of the hydrogenation energy of a mole of pyridine rings and conclusion	1

D6 Maximum score 1

Examples of a correct answer are:

- The activation energy for the hydrogenation of benzene rings is greater than that for the hydrogenation of pyridine rings.
- The catalyst is specific for the hydrogenation of the pyridine ring.

D7 Maximum score 2

	· P is H₃O⁺ · Q is NH₄⁺	1
	If the answer ${\bm P}$ is ${\bm H}_2{\bm O}$ and ${\bm Q}$ is $N{\bm H}_3$ is given	1
□8	Maximum score 2	
	• R is CH ₃ OH	1
	· S is H ₂ O	1

Problem 3 The decomposition of azomethane		14 points
□9	Maximum score 2	
	A correct answer might look as follows:	
	$H_3C - N = \overline{N} - CH_3$	
	\cdot single bonds between the N atoms and C atoms and double bond between both N atoms \cdot non-bonding electron pairs on both N atoms	oms 1 1
	Note When the answer $CH_3-N=\overline{N}-CH_3$ is given, give full marks.	
□10	Maximum score 3	
	The nitrogen atoms have a trigonal planar geometry. There is no free rotation around the double bonds between the N atoms / the doubl is rigid, so there are two <i>cis-trans</i> isomers.	e bond
	 the nitrogen atoms have a trigonal planar geometry there is no free rotation around the double bond between the N atoms / the double 	1 bond
	is rigid · conclusion	1 1
	Note	

An answer like the following is also correct: "There are two stereoisomers / cis-trans

isomers namely N = N and N = N."

In a Maximum score 7

An example of a correct calculation is as follows:

For a first order reaction $\ln \frac{[C_2H_6N_2]_0}{[C_2H_6N_2]_t} = kt$.

For gases, the partial pressure is proportional to the concentration, therefore

$$\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t} = kt \text{ or } k = \frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t}}{t}.$$

From 1 mole of gas, 2 moles of gas are produced, therefore

$$(p_{C_2H_0N_2})_0 = \frac{(p_{C_2H_0N_2})_\infty}{2} = \frac{1.144 \cdot 10^5}{2} = 0.572 \cdot 10^5$$
 Pa.

If at time t during the reaction the partial pressure of $C_2H_6N_2$ has decreased by x Pa, the partial pressures of C_2H_6 and N_2 have increased by x Pa, and the total pressure is then $(0.572 \cdot 10^5 + x)$ Pa, thus

$$(p_{C_2H_6N_2})_t = 0.572 \cdot 10^5 - x$$
.
After 10.0 min, $p_{total} = 0.656 \cdot 10^5$ Pa, thus $x = 0.656 \cdot 10^5 - 0.572 \cdot 10^5 = 0.084 \cdot 10^5$ Pa and $(p_{C_2H_6N_2})_{10.0} = 0.572 \cdot 10^5 - 0.084 \cdot 10^5 = 0.488 \cdot 10^5$ Pa and

$$\frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_{10.0}}}{10.0} = \frac{\ln \frac{0.572 \cdot 10^5}{0.488 \cdot 10^5}}{10.0} = 0.0159$$

After 21.0 min, $p_{\text{total}} = 0.732 \cdot 10^5$ Pa, thus $x = 0.732 \cdot 10^5 - 0.572 \cdot 10^5 = 0.160 \cdot 10^5$ Pa and $(p_{\text{C},\text{H},\text{N}_2})_{21.0} = 0.572 \cdot 10^5 - 0.160 \cdot 10^5 = 0.412 \cdot 10^5$ Pa and

$$\frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_{21.0}}}{21.0} = \frac{\ln \frac{0.572 \cdot 10^5}{0.412 \cdot 10^5}}{21.0} = 0.0156$$

After 35.0 min, $p_{\text{total}} = 0.813 \cdot 10^5$ Pa, thus $x = 0.813 \cdot 10^5 - 0.572 \cdot 10^5 = 0.241 \cdot 10^5$ Pa and $(p_{\text{C},\text{H}_{k}\text{N}_{2}})_{35.0} = 0.572 \cdot 10^5 - 0.241 \cdot 10^5 = 0.331 \cdot 10^5$ Pa and

$$\frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_{35.0}}}{35.0} = \frac{\ln \frac{0.572 \cdot 10^5}{0.331 \cdot 10^5}}{35.0} = 0.0156$$

Three times (almost) the same result for $\frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t}}{t}$ is obtained, so this is a first order reaction.

 $k = \frac{0.0159 + 0.0156 + 0.0156}{3} = 0.0157 \text{ min}^{-1}.$ In SI units: $k = \frac{0.0157}{60} = 2.62 \cdot 10^{-4} \text{ s}^{-1}.$

• notion that holds for the first order reaction $\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t} = kt$ or $k = \frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t}}{t}$ 1 · calculation of $(p_{C,H,N,})_0$: 1.144·10⁵ Pa divided by 2 1 \cdot notion that the increase in total pressure equals the decrease in ($p_{C,H,N}$) 1 $\cdot \text{ calculation of } (p_{\mathsf{C}_{,\mathsf{H}_{s}\mathsf{N}_{2}}})_{10.0}, \ (p_{\mathsf{C}_{,\mathsf{H}_{s}\mathsf{N}_{2}}})_{21.0} \text{ and } (p_{\mathsf{C}_{2}\mathsf{H}_{s}\mathsf{N}_{2}})_{35.0}$ 1 $\frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t}}{t}$ for t = 10.0 min, t = 21.0 min and t = 35.0 min and concluding · calculation of that it is a first order reaction 1 $\cdot \text{ calculation of } k: \text{ the average of the results of } \frac{\ln \frac{(p_{C_2H_6N_2})_0}{(p_{C_2H_6N_2})_t}}{t} \text{ for } t = 10.0 \text{ min, } t = 21.0 \text{ min}$ and *t* = 35.0 min 1 \cdot correct unit of *k* provided 1 If in an otherwise correct answer k is calculated for only one moment (so not is proven that 5 it is a first order reaction) Notes If the unit is given in min⁻¹, do not penalize this. When by using the data at two points it is shown that the reaction is of the first order, and for the calculation of k the average of the two results of $\frac{\ln \frac{(p_{C_2H_0N_2})_0}{(p_{C_2H_0N_2})_t}}{t}$ is used, do not penalize this. □12 Maximum score 2

An example of a correct answer is:

The rate constant should be determined at one more temperature, and Arrhenius' law applied.

 \cdot the rate constant should be determined at one more temperature

· apply Arrhenius' law

1

Problem 4 Superphosphate

$$2 Ca_5(PO_4)_3F(s) + 7 H_2SO_4(l) \rightarrow 3 Ca(H_2PO_4)_2(s) + 7 CaSO_4(s) + 2 HF(g)$$

\cdot correct formulas with correct state symbols at the correct side of the arrow	1
· P and F balanced correctly	1
· Ca, H, S and O balanced correctly	1

□14 Maximum score 3

An example of a correct calculation is:

 $\frac{3 \times 234.05}{3 \times 234.05 + 7 \times 136.14} \times 10^2 = 42 \text{ (mass\%)}$

 \cdot calculation of the molar mass of Ca(H₂PO₄)₂: 234,05 g mol⁻¹

- \cdot calculation of the sum of the masses of 3 moles of Ca(H_2PO_4)_2 and 7 moles of CaSO_4
- \cdot rest of the calculation and answer rounded to the nearest whole number

Notes

- When an incorrect answer to question 14 is a direct consequence of an incorrect answer to question 13 and the molar ratio Ca(H₂PO₄)₂ : CaSO₄ was not equal to 1:1, do not penalize this.
- When the molar ratio $Ca(H_2PO_4)_2$: $CaSO_4 = 1$: 1 was used in the answer to question 14, the second partial score is not to be assigned.

D15 Maximum score 2

A correct answer can be formulated as follows: By dissolving $Ca(H_2PO_4)_2$, the $[Ca^{2+}]$ increases. Hence, the solution equilibrium of $CaSO_4$ shifts to the left (and less $CaSO_4$ dissolves).

 due to dissolving Ca(H₂PO₄)₂, the [Ca²⁺] increases so the solution equilibrium of CaSO₄ shifts to the left 	1 1
If an answer is given such as: "Due to the dissolving of $Ca(H_2PO_4)_2$, the solution already contains many ions so that less Ca^{2+} and SO_4^{2-} can be added/dissolved."	1

1

1

□16 Maximum score 3

A correct answer can be formulated as follows:

 $(NH_4)_3PMO_{12}O_{40} + OH^- \rightarrow 12 MoO_4^{2-} + HPO_4^{2-}$

The amount of negative charges to right of the arrow is $12 \times 2 + 2 = 26$. So 26 moles of OH^- react with 1 mole of $(NH_4)_3PMo_{12}O_{40}$.

- \cdot each mole of (NH₄)₃PMo₁₂O₄₀ forms 12 moles of MoO₄²⁻ and 1 mole of HPO₄²⁻ 1 1
- calculation of the amount of negative charges to the right side of the arrow
- number of OH⁻ made equal to the amount of negative charges on the right side of the arrow

If an answer is given like: "To the right of the arrow MoO_4^{2-} and HPO_4^{2-} are listed, these have 4 negative charges, so 4 (moles of) OH- react."

Note

When the complete and correct reaction equation is given, give full marks.

D17 Maximum score 4

An example of a correct calculation is:

 $\frac{(10.00 - 0.380)}{26} \times \frac{1}{2} \times \frac{100.0}{10.00} = 1.85 \text{ (mmol)}$

- · calculation of the amount of mmoles of OH^- that reacted with $(NH_4)_3PMo_{12}O_{40}$: 10.00 - 0.380 (mmol)
- \cdot calculation of the amount of mmoles of (NH₄)₃PMo₁₂O₄₀: dividing the amount of mmoles of OH[−] by 26
- \cdot calculation of the amount of mmoles of Ca(H₂PO₄)₂ present in 10.00 mL solution: dividing the amount of mmoles of (NH₄)₃PMo₁₂O₄₀ by 2
- \cdot calculation of the amount of mmoles of Ca(H₂PO₄)₂ present in 100.0 mL solution: dividing the amount of mmoles of $Ca(H_2PO_4)_2$ by 10.00 (mL) and multiplying by 100.0 (mL)

Notes

- When an incorrect answer to question 17 is a direct consequence of an incorrect answer to question 16 and the answer to question 16 was not equal to 1 mol OH^- , do not penalize this
- When the following molar ratio is used in question 17: "one mole of $(NH_4)_3PMo_{12}O_{40}$ reacts with one mole of OH^{-} (as answer to question 16)", the second partial score is not to be assigned.

1

1

1

1

1